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CRITICAL EXPONENT AND DISPLACEMENT OF
NEGATIVELY CURVED FREE GROUPS

YONG HOU

Abstract
We study the action of the fundamental group Γ of a negatively curved 3-

manifold M on the universal cover M̃ of M . In particular we consider the

ergodicity properties of the action and the distances by which points of M̃
are displaced by elements of Γ. First we prove a displacement estimate for a
general n-dimensional manifold with negatively pinched curvature and free
fundamental group. This estimate is given in terms of the critical exponent
D of the Poincaré series for Γ. For the case in which n = 3, assuming that
Γ is free of rank k ≥ 2, that the limit set of Γ has positive 2-dimensional
Hausdorff measure, that D = 2 and that the Poincaré series diverges at the
exponent 2, we prove a displacement estimate for Γ which is identical to the
one given by the log(2k − 1) theorem [1] for the constant-curvature case.

1. Introduction

In the followingM is a complete Riemannian n-manifold with finitely
generated fundamental group Γ. We will assume that the sectional cur-
vature K satisfies −b2 ≤ K ≤ −a2 for some 0 < a ≤ b. A manifold which
satisfies curvature bounds of this type will be said to have negatively
pinched curvature. The Riemannian universal cover of M is denoted by
M̃ , and M is identified with M̃/Γ. The following additional notations
and terminologies will also be used:

• D is the critical exponent of the Poincaré series∑
γ∈Γ

exp(−sdist(x, γx))

of Γ. This means that for every x ∈ M̃ , the series diverges when
s < D and converges when s > D.
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• Γ is said to be divergent if the Poincaré series diverges at s = D.

• S denotes a arbitrary, fixed free generating set of Γ, with conven-
tion that the inverses are not included.

• Λ(Γ) is the limit set of Γ, which is the unique minimal closed
Γ-invariant subset of S∞.

• D denotes the Hausdorff dimension of Λ(Γ) (with respect to the
Busemann metric, the Gromov metric or the shadow metric: See
§2).

• Md denotes the d-dimensional Hausdorff measure on S∞ with re-
spect to the Busemann metric.

• For each x ∈ M̃ and γ ∈ Γ, we refer to dist(x, γx) as the displace-
ment of x under γ.

Theorem 1.1. Suppose that −1 ≤ K ≤ −a2 and that Γ is free.
Then ∑

γ∈S

1
1 + exp(D dist(x, γx))

≤ 1
2
.

Theorem 1.2. Let M = M̃/Γ be a 3-manifold with −1 ≤ K ≤
−a2. Suppose that Γ is free, that M2(Λ(Γ)) > 0, that D = 2 and that Γ
is divergent. Then the displacement satisfies∑

γ∈S

1
1 + exp(dist(x, γx))

≤ 1
2
.

As corollary to the above Theorem 1.1, we have the following

Corollary 1.3. Suppose that M is a rank-1 locally symmetric
space normalized so that −1 ≤ K ≤ −a2, and that Γ is free. Then,∑

γ∈S

1
1 + exp(Ddist(x, γx))

≤ 1
2
.

The study of the displacement function of fundamental group Γ is
crucial in understanding the geometry of the manifold M . In constant
curvature spaces, the current best estimate is due to the work of Culler
and Shalen [4] where they have obtained an log 3 lower bound for the



negatively curved free groups 175

displacement of rank 2 free group. Later the same estimate has been
generalized to rank k in [1] where the log(2k − 1) theorem is obtained.

In this paper we prove the estimate given by Theorem 1.1. The
crucial difference from the constant curvature case is the involvement
of the critical exponent in the estimate. Hence it provides an rela-
tionship between displacement and Hausdorff dimension D. When the
critical exponent D is < 1 we have a estimate which is stronger than
the log(2k − 1) estimate even for constant curvature spaces (see Corol-
lary 3.7). Theorem 1.2 is closely related to the question of rigidity for
Γ with D = 2 (see Theorem 3.5). In [8] a topological condition on M
has been established for which Γ is divergent at D.

In Section 2 will study invariant densities on S∞ and in particular
a decomposition theorem of Γ with respect to the conformal invariant
density is proved. Section 3 is devoted to proving the displacement
function estimates and additional corollaries.
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2. The boundary S∞

In some situations we will take the dimension ofM to be 3, otherwise
we will assume M is n-dimensional in general.

Let y ∈ M̃ and ζ ∈ S∞ be given. The following notations will be
assumed throughout.

• Sy denotes the unit sphere in the tangent space at y.

• Φy denotes the natural homeomorphism between S∞ and Sy.

• cζy(t) denotes the geodesic ray connecting y and ζ.

2.1 Metrics on S∞

Fix a point x ∈ M̃ . Let δ > 0 be a positive real number. Let ξ, ζ in S∞
be given.
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In [7], Gromov defined a metric on S∞ as follows. Let y, z ∈ M̃ be
given. Let us consider arbitrary continuous curve c(t) in M̃ with initial
point and end point denoted by c(t0) = y and c(t1) = z respectively.
Define a nonnegative real-valued function Gx on M̃ × M̃ by

Gx(y, z) := inf
all c

(∫
[t0,t1]

exp(−δ dist(x, c(t))) dt
)
.

In particular, Gromov showed that there exists δ(b) > 0 depending only
on the lower pinching constant b such that for any δ with 0 < δ ≤ δ(b),
the function Gx extends continuously to S∞×S∞ and defines a distance.
Every element of Γ extends to S∞ as a Lipschitz map with respect to
Gx.

There are also many other equivalent metrics on S∞. In particular,
Kaimanovich [9] has studied the following metrics.

Kx metric : Let Bζ denote the Busemann function based at x0, i.e.,

Bζ := lim
τ→∞dist(x, cζx0

(τ))− τ.

Changing the base point x0 will change Bζ only by adding a con-
stant. Hence the function defined byBζ(x, y) := Bζ(x)−Bζ(y), for
x, y ∈ M̃ , is independent of the base point. The function Bζ(x, y)
is called the Busemann cocycle. Define a real-valued function βx :
S∞ × S∞ −→ R by βx(ξ, ζ) := Bξ(x, y) + Bζ(x, y) where y is a
point on the geodesic connecting ξ and ζ. It is clear from the
definition of the Busemann function that βx(ξ, ζ) is defined inde-
pendently of the choice of y. Geometrically, βx(ξ, ζ) is the length
of the segment on the geodesic connecting ξ and ζ cut out by the
horospheres centered at ξ and ζ passing through the point x. The
Kx metric is then defined by

Kx(ξ, ζ) := exp
(
−1
2
δβx(ξ, ζ)

)
.

Lx metric: Let αx(ξ, ζ) denote the distance between x and the geodesic
connecting ξ and ζ. The function Lx : S∞ × S∞ −→ R is then
defined by

Lx(ξ, ζ) := exp(−δαx(ξ, ζ)).
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dx metric: Define a function lx : S∞ × S∞ −→ R by

lx(ξ, ζ) := sup
{
τ | dist (cxξ (τ), cxζ (τ)) = 1

}
.

Geometrically, a neighborhood about ξ in S∞ with respect to the
topology induced by lx is the shadow cast by the intersection of
1-ball about cxξ (τ) and τ -sphere about x. The dx metric is then
defined by

dx(ξ, ζ) := exp(−δlx(ξ, ζ)).

Proposition 2.1 ([9]). There exists a positive number δ(a, b) > 0
depending only on the pinching constants a and b such that for every
0 < δ ≤ δ(a, b) the metrics Kx, Lx, dx are equivalent to Gromov’s
metric.

From now on we will fix a δ > 0 having the property stated in
Proposition 2.1.

For completeness we include the following comparison theorem by
Toponogov [10]. Let M̃a and M̃b denote the simply connected com-
plete constant curvature manifolds with K = −a and K = −b respec-
tively. Denote a geodesic triangle with θ = ∠A and r = dist(A,B),
t = dist(A,C), s = dist(B,C) by �ABC.

Theorem 2.2 (Toponogov’s Comparison). Keeping the above no-
tation, let �ABC be a geodesic triangle in M̃ . Then we have

cos θ sinh ar sinh at ≥ cosh ar cosh at− cosh as,(i)
cos θ sinh br sinh bt ≤ cosh br cosh bt− cosh bs.(ii)

2.2 Γ-Invariant Density on S∞

First, let us recall a simple uniqueness result.
We will say that two Borel measures on S∞ are in the same Γ-class

if the Radon-Nikodym derivative of γ∗ν1 with respect to ν1 is equal to
the Radon-Nikodym derivative of γ∗ν2 with respect to ν2.

Proposition 2.3. Let Γ be nonelementary and discrete. Suppose
that Γ acts ergodically on S∞ with respect to a measure ν defined on
S∞. Then every measure of S∞ in the same measure class as ν is a
constant multiple of ν.
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Proof. Denote the measure class of ν by [ν]. Let µ ∈ [ν] then
σ := 1

2(µ+ν) is also in [ν]. Since both ν and µ are absolutely continuous
with respect to σ, their Radon-Nikodym derivatives with respect to σ
defines a ν-measurable Γ-invariant function on S∞. Then, the result
follows from ergodicity of Γ, which implies these functions are equal to
a non-zero constant almost ν-everywhere. q.e.d.

A subset A of M̃ is called uniformly discrete if there exists a pos-
itive number ε such that for any two distinct point x, y ∈ A we have
dist(x, y) > ε.

Definition 2.4. Let V ⊂ M̃ be a uniformly discrete subset. Let
hs(x, y) : M̃ × M̃ −→ R

+ be a family of positive continuous functions
indexed by s ∈ R such that Ks(x, y, ζ) := limz→ζ

hs(x,z)
hs(y,z)

exists and

defines a family of continuous functions on M̃ × M̃ ×S∞. Suppose that
there exists a number α for which the series Zx,s,V :=

∑
v∈V hs(x, v) is

convergent when s > α and divergent when s ≤ α for any x ∈ M̃ . Then
we call Zs,V an α-series of V . If we also have hs(γx, γy) = hs(x, y) for
every isometry γ of M̃ , then Zs,V will be called an invariant α- series of
V .

For a given α-series Zs,V of V we will define a Borel measure νx,Z,V,s
on V by

∑
v∈V hs(x, v)δv.

Proposition 2.5. Let x be a point of M̃ and W ⊂ M̃ infinite
uniformly discrete subset. Let Zs,W be an α-series of W . Then for
every V ⊂W there exists a sequence (si) of real numbers larger than α
such that:

(a) limi→∞ si = α.

(b) The sequence (Z−1
x,si,W

νx,Z,V,si)i is a weakly convergent sequence of

Borel measures of M̃ ∪ S∞ with mass at most 1, and the limit
Borel measure denoted by νx,Z,V is supported on S∞.

(c) νx,Z,W is a probability measure.

(d) [νy,Z,V ]y∈M̃ is a density of S∞ with Radon-Nikodym derivative at
ζ ∈ S∞ given by Kα(x, y, ζ).

Proof. Take a sequence (s′i) which converges to α from above. For
all i, the Borel measure Z−1

x,s′i,W
νx,Z,V,s′i has mass at most 1 . Hence there
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exists a subsequence (s′ij ) of (s
′
i) such that Z−1

x,s′ij ,W
νx,Z,V,s′ij

converges

weakly to a Borel measure νx,Z,V with mass at most 1. If V = W then
the measures in the above sequence are probability measures, hence
νx,Z,W is a probability measure. If B ⊂ M̃ is any compact subset then
B ∩ V is finite. Since Zx,s′ij ,W

−→ ∞, we must have νx,Z,V (B ∩ V ) = 0.

Hence, νx,Z,V has support contained in S∞. Finally, for y ∈ M̃ and
ζ ∈ S∞ we have

lim
z→ζ

hs′ij
(x, z)

hs′ij
(y, z)

= Ks′ij
(x, y, ζ),

so the Radon-Nikodym derivative of νx,Z,V is given by the limit of
Ks′ij

(x, y, ζ) as s′ij −→ α, which is Kα(x, y, ζ). q.e.d.

Proposition 2.6. Let W be an infinite uniformly discrete subset
of M̃ . Let V be a collection of subsets of W with W ∈ V. Suppose
we have an invariant α-series Zs,W of W . Then there exists a family
(νV )V ∈V of Borel measures for M̃ ∪S∞, indexed by the collection V and
satisfying the following conditions:

(1) νW (S∞) = 1.

(2) For any finite collection (Vj)1≤j≤n of disjoint sets in V with V :=∐
j Vj ∈ V, we have νV =

∑
j νVj .

(3) For any V ∈ V and γ isometry of M̃ with γV ∈ V we have γ∗νγV =
νV .

(4) The support of νV is contained in V ∩ S∞.

Proof. From Proposition 2.5 (c), we have (1). For (2), let χVj
be the characteristic function of Vj . Then νVj = νV χVj , which gives∑
j νVj =

∑
j νV χVj = νV . Let γ be a isometry of M̃ . Since, Zs,W

is an invariant α-series, we have γ∗νγx,Z,γV,s = νx,Z,V,s; therefore by
Proposition 2.5 we have γ∗νγx,γV = νx,V . This gives us (3). Finally, (4)
follows easily from Proposition 2.5 (b). q.e.d.

Next we will prove a result which is a generalization of the Culler-
Shalen paradoxical decomposition theorem to this abstract setting.

Theorem 2.7. Let Γ be a finitely generated, free discrete group of
isometries of M̃ with generating set Ω. Let x ∈ M̃ be given. Suppose
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we have an invariant α-series Zs,W with W = Γx. Set Ψ := Ω
∐
Ω−1.

Then there exist a Γ-invariant density [µy]y∈M̃ on S∞, and a family
[νψ]ψ∈Ψ of Borel measures on S∞ with:

(1) µx(S∞) = 1.

(2) µx =
∑
ψ∈Ψ νψ.

(3)
∫
S∞ K(x, ψ−1x, ξ)dνψ−1(ξ) = 1− ∫S∞ dνψ.

Proof. Let us write every element γ ∈ Γ as a reduced word ψ1 · · ·ψn
with {ψj} ⊂ Ψ. Then we have the decomposition of Γ as Γ = {1}∐∐
ψ∈Ψ Iψ, where Iψ is the set of nontrivial elements in Γ with inital

letter ψ. By the fact that Γ act freely on M̃ we have W = Γx =
{x}∐∐ψ∈Ψ Vψ where Vψ = {γx : γ ∈ Iψ}. Let V denote the collection
consisting of all sets of the form

∐
ψ∈Ψ′ Vψ or {x}∐∐ψ∈Ψ′ Vψ for Ψ′ ⊂

Ψ. Applying Proposition 2.6 with W and V so defined, we get a family
of Borel measures (µy,Vψ)y∈M̃ for each ψ ∈ Ψ. By Proposition 2.6 (1),
µx,W is a probability measure on S∞, which gives (1). Define νψ := µx,Vψ
for each ψ ∈ Ψ. By the above decomposition of W , we have µx,W =
µx,x+

∑
ψ∈Ψ νψ. But µx,x = 0, which gives (2). SinceW = Vψ

∐
ψVψ−1 ,

we have ψVψ−1 ∈ V. Then by (3) of Proposition 2.6, we get

µψ−1x,Vψ−1
= ψ∗µx,W−Vψ = ψ∗(µx − νψ).

By Proposition 2.5 (d), we have

dµψ−1x,Vψ−1
= K(ψ−1x, x, ξ)dµx,Vψ−1 .

From this, we get∫
S∞
K(ψ−1x, x, ξ)dνψ−1 =

∫
S∞

d(ψ∗(µx,W − νψ)) = 1−
∫
S∞

dνψ.

The last equality gives us (3), which concludes the proof. q.e.d.

Next we will construct two α-series of W = Γx. The first construc-
tion is based on the work of Ancona, uses the λ-Green’s function, which
gives rise to the Poisson kernel density (λ-harmonic measure) on S∞.
The second construction, utilizes the Poincaré series, gives rise to the
Patterson-Sullivan measure [15], which is a D-conformal density.
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Harmonic density. Let λ1 and λ̃1 denote the infinum of the spec-
trum of ∆ onM = M̃/Γ, and of ∆̃ on M̃ , respectively. Recall that for a
noncompact open manifold, the infinum of the spectrum is characterized
as

λ1 := inf
f∈C∞

o ,f �=0

(∫ |∇f |2∫
f2

)
where C∞

o is the space of smooth functions onM with compact support.
Note that we always have λ1 ≤ λ̃1.

The λ1-harmonic functions have been studied by Ancona in [2].

Proposition 2.8 (Ancona). For each s < λ1, the elliptic opera-
tor ∆̃ + sI has a Green function Gs(x, y), and there exists a function
f : R

+ −→ R
+ such that

∑
γ∈Γ Ĝs(x, γy) converges for s < λ1 and

diverges for s ≥ λ1, where Ĝs(x, γy) := exp(f(dist(y, γy)))Gs(x, γy).
Furthermore, Ps(x, y, ζ) := limz→ζ

Gs(x,z)
Gs(y,z)

defines the Poisson kernel of

∆̃ + sI at ζ ∈ S∞.

Theorem 2.9. Let x be any point of M̃ . With notation as in
Proposition 2.8, the series

∑
v∈V Ĝs(x, v) is a λ1-series for W = Γx.

Furthermore, there is a family of Borel measures [ω1y ]y∈M̃ on S∞ such
that:

(i) For all x, y ∈ M̃ , Radon-Nikodym derivative dω1y/dω
1
x at any point

ζ ∈ S∞ is equal to Pλ1(x, y, ζ).

(ii) ω1x is of mass 1.

Proof. The first assertion follows from Proposition 2.5 with α = λ1.
The second assertion then follows from Proposition 2.8. q.e.d.

λ-dimensional Hausdorff measure. It is not straightforward to
define an “area” measure on S∞ in the variable curvature case. However,
there are useful ways of doing this, which involve making appropriate
choices of a metric on S∞ and considering the corresponding Hausdorff
measure.

For reasons that will become clear shortly, we will be working with
the Kx metric on S∞. Let C be a subset of S∞. The λ-dimensional
Hausdorff measure Mλ

x(C) of C on the metric space(S∞,Kx) is defined
as limr→0 Mλ

r (C) where

Mλ
r := inf

{∑
j

r
λ/δ
j |C ⊂ ∪jB(ξj , rj); ξ ∈ C, rj ≤ r

}
.
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Here B(ξj , rj) is an rj-ball about ξj with respect to the metric Kx.
Observe that for any x ∈ M̃ and any γ ∈ Γ, we have γ∗Mλ

x = Mλ
γ∗x;

this follows from the straightforward identity Bγζ(γx, γy) = Bζ(x, y).
(Note that in the case of H

3, if we take a round metric about a point
z0 in H

3 and denote its extension to ∂H
3 by ρ0, then M2

z0 is the area
metric corresponding to the spherical metric Az0 .)

A family of finite Borel measures [νy]y∈M̃ will be called a λ-confor-

mal density under the action of Γ if for every x ∈ M̃ and every γ ∈ Γ we
have γ∗νy = νγ∗y, and the Radon-Nikodym derivative dνy

dγ∗νy (ζ) at any
point ζ ∈ S∞ is equal to exp(−λBζ(γ−1y, y)). (This is to be interpreted
as being vacuously true if, for example, the measures in the family are
all identically zero.)

First we recall a fundamental fact about conformal density, which
was originally proved by Sullivan in the hyperbolic case and generalized
to the pinched negatively curved spaces by Yue [16]. It relates the
divergence of Γ at the critical exponent D with ergodicity of the D-
conformal density under the action of Γ.

Proposition 2.10 (Sullivan). Let Γ be a nonelementary, discrete,
torsion-free and divergent at D. Suppose [ν] is a D-conformal density
under the action of Γ, then Γ is ergodic with respect to [ν].

Proposition 2.11. Let Γ be a discrete group of isometries of M̃ .
Suppose Mλ

x is a finite measure. Then Mλ
x is a λ-conformal density

under the action of Γ.

Proof. Let γ ∈ Γ and ξ, ζ ∈ S∞ be given. By definition we have
βx(γξ, γζ) = Bγξ(x, γy)+Bγζ(x, γy) where γy is a point on the geodesic
connecting γξ and γζ. Since

Bγξ(x, γy) = Bγξ(x)−Bγξ(γy)
= Bξ(γ−1x)−Bξ(y)

we have

βx(γξ, γζ) = [Bξ(γ−1x)−Bξ(y) +Bξ(x)−Bξ(x)]
+[Bζ(γ−1x)−Bζ(y) +Bζ(x)−Bζ(x)]

= Bξ(γ−1x, x) +Bζ(γ−1x, x) + βx(ξ, ζ).

Hence, as ξ −→ ζ we have Bξ(γ−1x, x)+Bζ(γ−1x, x) −→ 2Bζ(γ−1x, x).
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Therefore

lim
ξ→ζ

Kx(γξ, γζ)
Kx(ξ, ζ)

= exp(−δBζ(γ−1x, x)).

Finally, using the fact that γ∗Mλ
x = Mλ

γ∗x and the above transformation
property of Kx we have the desired result :

dMλ
x

dγ∗Mλ
x

(ζ) = exp(−λBζ(γ−1x, x)).

q.e.d.

Proposition 2.12. Suppose dim M̃ = 3. Let Ax be the normalized
area measure on Sx. Then, for any Borel subset C ⊂ Sx we have

Φ∗
xM

2b
x (C) ≤ Ax(C).

Hence, if M2b
x (Λ(Γ)) > 0 then by normalization, M2b

x defines a proba-
bility measure on Λ(Γ) which is bounded by Ax.

Proof. Let ξ and ζ in S∞. Then we have

Bx(ξ, ζ) = lim
τ→∞(2τ − dist(y, cξx(τ))− dist(y, cζx(τ)))

where y is any arbitrary point on the geodesic connecting ξ and ζ. By
letting y −→ ξ we get βx(ξ, ζ) = limτ→∞(2τ − dist(cξx(τ), c

ζ
x(τ)).

Let BK(ζ, r) denote the ball of radius r about ζ with respect to the
Kx-metric. Let ξ ∈ BK(ζ, r) be an element with exp(−bβx(ξ, ζ)) = r2b/δ
and minimal ∠xξζ. By the above formula for βx(ξ, ζ) we then have
Kx(ξ, ζ) = limτ→∞ exp( δ2(dist(c

ξ
x(τ), c

ζ
x(τ)) − τ)) . Let s(τ) denote

dist(cξx(τ), c
ζ
x(τ)) and θ := ∠xξζ. Then using inequality (i) of Proposi-

tion 2.2 we have:

cosh2 bτ − cosh bs(τ) ≥ cos θ sinh2 bτ.

Substituting 1 + sinh2 bτ for cosh2 bτ we get

sinh2 bτ(1− cos θ) + 1 ≥ cosh bs(τ).

By using the equality sinh2 bs(τ)2 = 1
2(cosh bs(τ)− 1) we then obtain

sinh2 bτ(1− cos θ) ≥ 2 sinh2
bs(τ)
2
,
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or {
exp(bs(τ)/2)− exp(−bs(τ)/2)

exp(bτ)− exp(−bτ)
}2

≤ 1
2
(1− cos θ).

Hence for large τ we have

lim
τ→∞{exp(bs(τ)/2− bτ)}2 ≤ 1

2
(1− cos θ).

By using the last equation we get r2b/δ ≤ Ax(Φ−1
x (BK(ζ, r))).

Denote by C ′ := Φx(C). Let B := ∪jBK(ζj , rj) be a cover of C ′,
with ζj ∈ C ′ and rj ≤ r. Then

M2b
r (C

′) = inf
B

∑
j

r
2b/δ
j ≤ inf

B

∑
j

Ax(Φ−1
x (BK(ζj , rj)).

Let Vj := Φ−1
x BK(ζj , rj). Then C ⊂ ∪jVj is a cover of C. Hence we have

inf∪Vj
∑
Ax(Vj) = Ax(C) by regularity of Ax. Therefore M2b

r (C
′) ≤

Ax(C). Letting r → 0 we get the desired result. q.e.d.

Corollary 2.13. Suppose M2b
x (Λ(Γ)) > 0. Then [M2b

y ]y∈M̃ can be
normalized so as to define a 2b-conformal density under the action of Γ
whose total mass is 1.

Proof. The corollary follows from Proposition 2.11 and Proposi-
tion 2.12. q.e.d.

The Patterson-Sullivan construction. Let x ∈ M̃ and s > 0
be given. Denote the Poincaré series for a infinite uniformly discrete
subset W ⊂ M̃ by ZW (x, s), i.e., set

ZW (x, s) :=
∑
v∈W

exp(−sdist(x, v)).

In particular, W can be the orbit Γx of x. We will use the notation
ZΓ(x) to denote the Poincare series for W = Γx in this case.

Proposition 2.14. There is a unique number 0 ≤ D ≤ (n − 1)b,
such that for s > D, ZW converges and ZW diverges for s < D.

If ZW (x,D) is divergent, then we say that Γ is divergent.
Let V ⊂W . First consider the case that ZV (x,D) is divergent. Fol-

lowing Patterson-Sullivan, we will construct a family of Borel measures.
Define:

µV,x,s =
1

ZV (x, s)

∑
v∈V

exp(−sdist(x, v))δv ; s > D.
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Since ZV (x,D) = ∞, we have as s −→ D through a suitable sequence,
µV,x,s converges weakly to a limit probability measure, which we denote
by µV,x. This limit measure has its support contained in S∞.

From the definition of µV,x,s we have

dµV,x,s
dµV,y,s

(v) = exp(s(dist(y, v)− dist(x, v))).

As v −→ ζ, we have exp(s(dist(y, v)− dist(x, v))) −→ exp(−sBζ(x, y)).
Hence

dµV,x,s
dµV,y,s

(v) −→ dµV,x
dµV,y

(ζ) = exp(−DBζ(x, y)).

Therefore [µV,x] is a D-conformal density.
The above construction was based on the assumption that ZV (x,D)

= ∞. If ZV (x,D) < ∞ we can use the following lemma proved by
Patterson [12] and presented in [4].

Lemma 2.15. There exits a real-valued function α(t), such that
the perturbed Poincaré series Z̃V (x, s) :=

∑
v∈V exp(−α(dist(x, v))) is

finite for s > D and infinite when 0 ≤ s ≤ D.

Proof. Let sk := θkD for some increasing sequence of positive
numbers θk −→ 1. Let {Rk}k≥1 be a monotone increasing sequence of
positive numbers with Rk −→ ∞ and dist(x, v) ≤ Rk for all v ∈ Vk. We
also choose Vk ⊂ V so that∑

v∈Vk
exp(−sk dist(x, v)) ≥ k.

Note that 0 < sk < D, so ZV (x, sk) <∞. Let β(t) denote a continuous
increasing function with β(Rk) = θk and β(t) < 1 for t ≥ 0. Then the
desired adjustment function α is defined by α(t) :=

∫ t
0 β(τ)dτ ≤ θkt for

0 ≤ t ≤ Rk. To see this, note that

Z̃(x,D) ≥
∑
v∈Vk

exp(−Dα(dist(x, v))) ≥
∑
v∈Vk

exp(Dsk dist(x, v)) ≥ k

for every k ≥ 1. So we have Z̃(x,D) = ∞. q.e.d.

Note that, Z̃(x,D) = ∞ for one x implies Z̃(x,D) is divergent for all
x, by the fact that Z̃(x′, s) ≤ exp(sdist(x, x′))Z̃(x, s), for all x′, x ∈ M̃ .
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Proposition 2.16. For a given adjustment function α, we have:

exp(α(dist(x′, v))− α(dist(x, v)))−→ exp(Bξ(x′, x))

as v → ξ. Hence the above construction with Z̃V (x, s) in place of
Z̃V (x, s) still defines a conformal density.

Proof. Let {vk} be a sequence in V converges to ξ ∈ S∞. Then
dist(x, vk) −→ ∞ and

lim
k→∞

exp(dist(y, vk)− dist(x, vk)) = exp(Bξ(y, x)).

Since α′(t) = β(t) approaches to 1 as t −→ ∞, we have

lim
k→∞

α(dist(y, vk))− α(dist(x, vk))
dist(y, vk)− dist(x, vk)

= 1,

which gives the desired result:

lim
k→∞

exp(α(dist(y, vk))− α(dist(x, vk))) = exp(Bξ(y, x)).

q.e.d.

Proposition 2.17. The series Z̃V (x, s) defined by Lemma 2.15
is an invariant D-series for V with D ∈ [0, (n − 1)b], and its Radon-
Nikodym derivative at ζ ∈ S∞ is given by exp(−DBζ(x′, x)).

Proof. The proposition follows from Proposition 2.14, Lemma 2.15
and Proposition 2.16. q.e.d.

Let us define a function Θ : M̃ × M̃ × S∞ −→ R
+ by Θ(x, y, ξ) :=

exp(−Bξ(x, y)).
Theorem 2.18. Let Γ be a finitely generated, free discrete group

of isometries of M̃ with free generating set Ω. Let x ∈ M̃ . Set Ψ :=
Ω
∐
Ω−1. Then there exist a D-conformal density [µy]D

y∈M̃ under the
action of Γ, and a family [νψ]ψ∈Ψ of Borel measures on S∞ with:

(1) µx(S∞) = 1.

(2) µx =
∑
ψ∈Ψ νψ.

(3)
∫
S∞ ΘD(x, ψ−1x, ξ)dνψ−1(ξ) = 1− ∫S∞ dνψ.
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Proof. This follows from Proposition 2.17 and Theorem 2.7. q.e.d.

In the case where the curvature is a constant k, the density of
Patterson-Sullivan conformal measure coincides with the Poisson ker-
nel. Let Pk denote the corresponding Poisson kernel on M̃k. Then,
Pk : M̃ × M̃ × S∞ −→ R is given by

Pk(x, y, ξ) = (cosh k dist(x, y)− sinh k dist(x, y) cos∠yxξ)−1.

Proposition 2.19. Let (x, y, ξ) ∈ M̃ × M̃ × S∞ and λ ≥ 0 be
given. Then we have

Θaλ(x, y, ξ) ≥ Pλa (x, y, ξ)(I)

Θbλ(x, y, ξ) ≤ Pλb (x, y, ξ)(II)

Proof. Since

exp(−aλBξ(x, y)) = lim
v→ξ

cosh aλdist(y, v)
cosh aλdist(x, v)

and by Proposition 2.2 (i) we have

cosh aλdist(y, v)
cosh aλdist(x, v)
≥ (cosh aλdist(x, y)− tanh aλdist(y, v) sinh aλdist(x, y) cos∠xyv)−1.

Hence, by letting v −→ ξ we have exp(−aλBξ(x, y)) ≤ Pλa (x, y, ξ),
which proves (I). The proof for (II) is similar, but we use Proposition 2.2
(ii) in place of 2.2 (i). q.e.d.

3. Displacement

In this section, we will use the previous results to study the displace-
ment function of Γ. We set b = 1 ( i.e −1 ≤ K ≤ −a2) throughout this
section.

3.1 Useful lemmas

Lemma 3.1. Let a point x ∈ M̃ and an isometry γ of M̃ be given.
Let α and β be nonnegative numbers with α ≤ 1/2 and β ≤ 1. Let λ �= 0
be a positive number. Suppose that there exists a Borel measure ν on
S∞ such that:
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(i) ν(S∞) ≤ α.

(ii)
∫
S∞ Θ(x, γ−1x, ξ)λdν ≥ β.

Then

dist(x, γx) ≥ 1
λ
log

β

α
.

Proof. By Proposition 2.19 we have

β ≤
∫
S∞

Θ(x, γ−1x, ξ)λdν ≤
∫
S∞

Pλ1 (x, γ−1x, ξ)dν

≤ sup
S∞

Pλ1 ν(S∞)

≤
(

1
cosh(dist(γx, x))− sinh(dist(γx, x))

)λ
α.

Using the last inequality and the definitions of cosh z and sinh z, we
have

β

α
≤ exp(λ dist(γx, x)),

which gives

dist(x, γx) ≥ 1
λ
log

β

α
.

q.e.d.

Lemma 3.2. Let dimM = 3. Fix a point x ∈ M̃ . Let us use the
notation of Lemma 3.1. Suppose that ν satisfies:

(i) ν ≤ M2
x.

(ii) ν(S∞) ≤ α.

(iii)
∫
S∞ Θ(x, γ−1x, ξ)2dν ≥ β.

Then we have

dist(x, γx) ≥ 1
2
log

β(1− α)
α(1− β) .
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Proof. We define a function f : R × [0, π] −→ R by

f(z, φ) :=
(

1
c(zρ)− s(zρ) cosφ

)2
where ρ := dist(x, γx), c(zρ) := cosh zρ and s(zρ) := sinh zρ. Set
Θ := Θ(x, γ−1x, ξ).

Let A denote the normalized area measure on Sx. Giving Sx the
spherical coordinates (θ, φ), we have dA = 1

4π sinφdφdθ.
Let φ′ := cos−1(1 − 2α), and let C ⊂ Sx denote the spherical cap

given by φ ≤ φ′, so that A(C) = α. Then by hypothesis (ii) we have
ν(S∞) ≤ A(C).

By Proposition 2.12, we have that Φ∗
xM

2
x ≤ A, which gives Φ∗

xν ≤
A by hypothesis (i). Set ν ′ := Φ∗

xν and Θ′2 := Θ ◦ Φx. Then, by
Proposition 2.19 (II) we have∫

Sx

Θ′2dν ′ ≤
∫
Sx

P2
1 (x, y, φ)dν

′.

Note that by the definitions of P2
1 and C, we have infC P2

1 ≥ supSx−C P2
1 .

Hence∫
Sx

P2
1dν

′ =
∫
C
P2
1dν

′ +
∫
Sx−C

P2
1dν

′

≤
∫
C
P2
1dν

′ +
(
sup
Sx−C

P2
1

)
ν ′(Sx − C)

≤
∫
C
P2
1dν

′ +
(
inf
C

P2
1

)
A(C) ≤

∫
C
P2
1dν

′ +
∫
C
P2
1dA

≤
∫
C
P2
1dA.

By the formula for P2
1 , we have P2

1 = f(1, φ). Therefore∫
C
P2
1dA =

∫
C
f(1, φ)dA =

1
4π

∫ 2π

0

∫ φ′

0
f(1, φ) sinφdφdθ

=
α

(c(ρ)− s(ρ))(c(ρ)− s(ρ) + 2α(ρ))
.

Using hypothesis (iii) and last equation above and equations for c(ρ),
s(ρ), we can solve for ρ. This gives

ρ ≥ 1
2
log

β(1− α)
α(1− β)
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which is the desired result. q.e.d.

Lemma 3.3. Given x, y nonnegative numbers with x ≥ y and
x+ y ≤ 1, we have

1− x
y

≥1− p
p

(I)

(1− x)(1− y)
xy

≥
(
1− p
p

)2
(II)

where p := 1
2(x+ y).

Proof. We will only prove (I). The proof of (II) is similar and is
given in [1]. Let us write x = p+ z and y = p− z for some nonnegative
number z ∈ R. Then we have (p − z)(1 − x) = y(1 − p − z), which
implies p(1− x) + y(p− 1) = z − 2zp. But we have p ≤ 1

2 , which gives
us p(1− x) + y(p− 1) ≥ 0. Hence the result follows. q.e.d.

3.2 Theorem 1.1 and 1.2

Proof of Theorems 1.1 and Theorem 1.2. Write S = {γ1, ..., γk}. Let
Ψ := S∐S−1, and let x ∈ M̃ be an arbitrary point. Then by Theo-
rem 2.18, we have a Γ−invariant conformal density measure [µx]D on
S∞ and a family of Borel measures [νψ]ψ∈Ψ on S∞ which satisfies (1)–(3)
of Theorem 2.18.

Denote νγj (S∞) and νγ−1
j
(S∞) by, κj and ωj respectively for each

1 ≤ j ≤ k. Without loss of generality, we can assume κj ≤ ωj . Now,
from Theorem 2.18 (1) and (2) and the assumption κj ≤ ωj , we get
0 ≤ ωj ≤ 1 and 0 ≤ κj ≤ 1/2. It follows from Theorem 2.18 (3) that∫
S∞ ΘD(x, γ−1j x, ξ)dνγj = 1−ωj . Hence we can invoke Lemma 3.1 with
α = κj and β = 1− ωj . This gives

ρj := dist(x, γjx) ≥ 1
D

log
1− ωj
κj

.

By using Lemma 3.3 (I) with x = ωj , y = κj , we get

exp(Dρj) ≥ 1− pj
pj

,

which implies that
k∑
1

1
1 + exp(Dρj)

≤
k∑
1

pj =
1
2

k∑
1

(ωj + κj) =
1
2
.
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Now let us also assume the hypothesis of Theorem 1.2. Then by Propo-
sition 2.3 and Proposition 2.10 and Corollary 2.13 we have [µx] = cMD

x

for some constant c. Since both are normalized probability measures,
we have c = 1. By D = 2 and Theorem 2.18 (2) we get νγj ≤ M2

x.
Hence we can invoke Lemma 3.2 with α = κj and β = 1− ωj to obtain

ρj ≥ 1
2
log

(1− ωj)(1− κj)
κjωj

.

Then, by using Lemma 3.3 (II), we get

ρj ≥ log
1− pj
pj

and hence

1
1 + exp ρj

≤ 1
2
(ωj + κj).

Therefore

k∑
j=1

1
1 + exp ρj

≤ 1
2

k∑
j=1

(ωj + κj) =
1
2
.

q.e.d.

Proof of Corollary 1.3. Suppose M is rank-1 locally symmetric
manifold, then it follows from results of Sullivan, Bishop-Jones [3] and
Fernández-Melián [6] that the Hausdorff dimension of the conical limit
set Λc(Γ) is equal to D. Hence we have D ≤ D, which gives the desired
result. q.e.d.

Remark 3.4. In the proof of Theorem 1.2, the condition that Γ is
divergent is used only to conclude that Γ is ergodic with respect to µx.
Hence we can replace the condition that Γ is divergent by the condition
that Γ is ergodic with respect to µx.

Theorem 3.5. Suppose that M = M̃/Γ is a 3-manifold, that Γ is
free and that M2

x(Λ(Γ)) > 0. Suppose that D = 2 and Γ is ergodic with
respect to µx. Then ∑

γ∈S

1
1 + exp dist(x, γx)

≤ 1
2
.
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Theorem 1.1 yields the following corollaries.

Corollary 3.6. Let Γ be free on a generating set S = {α1, · · · , αk}.
If Γ is convex-cocompact, then

k∑
1

1
1 + exp(Ddist(x, αjx))

≤ 1
2

It is resonable to believe that the equality of D and the Hausdorff
dimension of conical limit set of Γ should remain true for the case of
variable (pinched negative) curvature. If this is the case, the hypothesis
that Γ is convex-cocompact can be removed from Corollary 3.6.

Corollary 3.7. Let Γ be free on a generating set S = {α1, · · · , αk}.
There exists at least 1 ≤ i ≤ k − 1 distinct generators such that

dist(x, αjix) ≥
1
D

log(2i+ 1)

for any x ∈ M̃ .

Corollary 3.8. Let Γ be free on a generating set S = {α1, · · · , αk}.
Let x ∈ M̃ , and let us assume elements of S is arranged so that the
displacement function of x ∈ M̃ under α1 has least value. Let m
be a nonnegative interger. Then each element of the generating set
{αm1 α2, αm+11 α2, α3, · · · , αk} have displacement value ≥ log 3

D .

Proof. It is sufficient to prove this for Γ of rank 2. The general
case follows from induction on k. Let {α1, α2} be any free basis of Γ,
and denote the critical exponent of Γ by DΓ. By Corollary 3.7 we have
at most one generator say α1 such that dist(x, α1x) < log 3

DΓ
. Then for

any integer m ≥ 0, {α1, αm1 α2} is also a free basis for Γ by Nielsen’s
transformation, hence dist(x, αm1 α2x) ≥ log 3

DΓ
by Corollary 3.7. q.e.d.
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